Shape Matching by Localized Calculations of Quasi-Isometric Subsets, with Applications to the Comparison of Protein Binding Patches
نویسندگان
چکیده
Given a protein complex involving two partners, the receptor and the ligand, this paper addresses the problem of comparing their binding patches, i.e. the sets of atoms accounting for their interaction. This problem has been classically addressed by searching quasi-isometric subsets of atoms within the patches, a task equivalent to a maximum clique problem, a NP-hard problem, so that practical binding patches involving up to 300 atoms cannot be handled. We extend previous work in two directions. First, we present a generic encoding of shapes represented as cell complexes. We partition a shape into concentric shells, based on the shelling order of the cells of the complex. The shelling order yields a shelling tree encoding the geometry and the topology of the shape. Second, for the particular case of cell complexes representing protein binding patches, we present three novel shape comparison algorithms. These algorithms combine a Tree Edit Distance calculation (TED) on shelling trees, together with Edit operations respectively favoring a topological or a geometric comparison of the patches. We show in particular that the geometric TED calculation strikes a balance, in terms of accuracy and running time between a purely geometric and topological comparisons, and we briefly comment on the biological findings reported in a companion paper. Key-words: Protein, 3D-structure, comparison, maximum clique, tree-editdistance. in ria -0 06 03 37 5, v er si on 1 30 J un 2 01 1 Similarité de formes par calculs localisés de sous-ensembles quasi-isométriques, avec applications à la comparaison des patchs de liaison protéiques Résumé : Étant donné un complexe protéique impliquant deux partenaires, un récepteur et un ligand, ce papier étudie le problème de comparer leur patchs de liaison, i.e. les ensembles d’atomes participant à leur interaction. Ce problème est classiquement formulé comme une recherche de sous-ensembles d’atomes quasi-isométriques entre les deux patchs, une tâche qui est équivalente à une recherche de cliques maximums. Ce problème étant NP-difficile, des patchs de liaison impliquant plus de 300 atomes ne peuvent-être traités. Nous étendons les travaux précédant dans deux directions. Premièrement, nous présentons un encodage générique pour les formes représentées par des complexes cellulaires. Nous partitionnons une forme en couches concentriques, basées sur “l’ordre de couche” des cellules du complexe. L’ordre des couches produisant un arbre de couches qui encode la géométrie et la topologie de la forme. Deuxièmement, pour le cas particulier de complexes cellulaires représentant des patchs de liaison de complexes protéiques, nous proposons trois algorithmes de comparaison de formes. Ces algorithmes combinent une distance d’édition d’arbre (TED, pour tree-edit-distance) sur les arbres de couches, avec des opérations d’éditions favorisant respectivement la comparaison topologique ou géométrique des patchs. Nous montrons en particulier que la TED géométrique établit un équilibre, en termes de précision et de temps de calculs, entre des comparaisons purement géométriques ou purement topologiques, et nous commentons brièvement les résultats biologiques qui sont détaillés dans un article compagnon. Mots-clés : Protéine, structure 3D, comparaison, clique maximum, distance d’édition d’arbre in ria -0 06 03 37 5, v er si on 1 30 J un 2 01 1 Shape Matching by Localized Calculations of Quasi-isometric Subsets 3
منابع مشابه
Fully Spectral Partial Shape Matching
We propose an efficient procedure for calculating partial dense intrinsic correspondence between deformable shapes performed entirely in the spectral domain. Our technique relies on the recently introduced partial functional maps formalism and on the joint approximate diagonalization (JAD) of the Laplace-Beltrami operators previously introduced for matching non-isometric shapes. We show that a ...
متن کاملDensity Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery
Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...
متن کاملBinding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches
Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comp...
متن کاملDetecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.
Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algo...
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کامل